:py:mod:`phoenix6.controls.differential_duty_cycle` =================================================== .. py:module:: phoenix6.controls.differential_duty_cycle Module Contents --------------- .. py:class:: DifferentialDutyCycle(target_output: float, differential_position: phoenix6.units.rotation, enable_foc: bool = True, differential_slot: int = 1, override_brake_dur_neutral: bool = False, limit_forward_motion: bool = False, limit_reverse_motion: bool = False, ignore_hardware_limits: bool = False, use_timesync: bool = False) Request a specified motor duty cycle with a differential position closed-loop. This control mode will output a proportion of the supplied voltage which is supplied by the user. It will also set the motor's differential position setpoint to the specified position. :param target_output: Proportion of supply voltage to apply in fractional units between -1 and +1 :type target_output: float :param differential_position: Differential position to drive towards in rotations :type differential_position: rotation :param enable_foc: Set to true to use FOC commutation (requires Phoenix Pro), which increases peak power by ~15% on supported devices (see SupportsFOC). Set to false to use trapezoidal commutation. FOC improves motor performance by leveraging torque (current) control. However, this may be inconvenient for applications that require specifying duty cycle or voltage. CTR-Electronics has developed a hybrid method that combines the performances gains of FOC while still allowing applications to provide duty cycle or voltage demand. This not to be confused with simple sinusoidal control or phase voltage control which lacks the performance gains. :type enable_foc: bool :param differential_slot: Select which gains are applied to the differential controller by selecting the slot. Use the configuration api to set the gain values for the selected slot before enabling this feature. Slot must be within [0,2]. :type differential_slot: int :param override_brake_dur_neutral: Set to true to static-brake the rotor when output is zero (or within deadband). Set to false to use the NeutralMode configuration setting (default). This flag exists to provide the fundamental behavior of this control when output is zero, which is to provide 0V to the motor. :type override_brake_dur_neutral: bool :param limit_forward_motion: Set to true to force forward limiting. This allows users to use other limit switch sensors connected to robot controller. This also allows use of active sensors that require external power. :type limit_forward_motion: bool :param limit_reverse_motion: Set to true to force reverse limiting. This allows users to use other limit switch sensors connected to robot controller. This also allows use of active sensors that require external power. :type limit_reverse_motion: bool :param ignore_hardware_limits: Set to true to ignore hardware limit switches and the LimitForwardMotion and LimitReverseMotion parameters, instead allowing motion. This can be useful on mechanisms such as an intake/feeder, where a limit switch stops motion while intaking but should be ignored when feeding to a shooter. The hardware limit faults and Forward/ReverseLimit signals will still report the values of the limit switches regardless of this parameter. :type ignore_hardware_limits: bool :param use_timesync: Set to true to delay applying this control request until a timesync boundary (requires Phoenix Pro and CANivore). This eliminates the impact of nondeterministic network delays in exchange for a larger but deterministic control latency. This requires setting the ControlTimesyncFreqHz config in MotorOutputConfigs. Additionally, when this is enabled, the UpdateFreqHz of this request should be set to 0 Hz. :type use_timesync: bool .. py:property:: name :type: str Gets the name of this control request. :returns: Name of the control request :rtype: str .. py:property:: control_info :type: dict Gets information about this control request. :returns: Dictonary of control parameter names and corresponding applied values :rtype: dict .. py:attribute:: update_freq_hz :type: phoenix6.units.hertz :value: 100 The period at which this control will update at. This is designated in Hertz, with a minimum of 20 Hz (every 50 ms) and a maximum of 1000 Hz (every 1 ms). If this field is set to 0 Hz, the control request will be sent immediately as a one-shot frame. This may be useful for advanced applications that require outputs to be synchronized with data acquisition. In this case, we recommend not exceeding 50 ms between control calls. .. py:attribute:: target_output Proportion of supply voltage to apply in fractional units between -1 and +1 - Units: fractional .. py:attribute:: differential_position Differential position to drive towards in rotations - Units: rotations .. py:attribute:: enable_foc Set to true to use FOC commutation (requires Phoenix Pro), which increases peak power by ~15% on supported devices (see SupportsFOC). Set to false to use trapezoidal commutation. FOC improves motor performance by leveraging torque (current) control. However, this may be inconvenient for applications that require specifying duty cycle or voltage. CTR-Electronics has developed a hybrid method that combines the performances gains of FOC while still allowing applications to provide duty cycle or voltage demand. This not to be confused with simple sinusoidal control or phase voltage control which lacks the performance gains. .. py:attribute:: differential_slot Select which gains are applied to the differential controller by selecting the slot. Use the configuration api to set the gain values for the selected slot before enabling this feature. Slot must be within [0,2]. .. py:attribute:: override_brake_dur_neutral Set to true to static-brake the rotor when output is zero (or within deadband). Set to false to use the NeutralMode configuration setting (default). This flag exists to provide the fundamental behavior of this control when output is zero, which is to provide 0V to the motor. .. py:attribute:: limit_forward_motion Set to true to force forward limiting. This allows users to use other limit switch sensors connected to robot controller. This also allows use of active sensors that require external power. .. py:attribute:: limit_reverse_motion Set to true to force reverse limiting. This allows users to use other limit switch sensors connected to robot controller. This also allows use of active sensors that require external power. .. py:attribute:: ignore_hardware_limits Set to true to ignore hardware limit switches and the LimitForwardMotion and LimitReverseMotion parameters, instead allowing motion. This can be useful on mechanisms such as an intake/feeder, where a limit switch stops motion while intaking but should be ignored when feeding to a shooter. The hardware limit faults and Forward/ReverseLimit signals will still report the values of the limit switches regardless of this parameter. .. py:attribute:: use_timesync Set to true to delay applying this control request until a timesync boundary (requires Phoenix Pro and CANivore). This eliminates the impact of nondeterministic network delays in exchange for a larger but deterministic control latency. This requires setting the ControlTimesyncFreqHz config in MotorOutputConfigs. Additionally, when this is enabled, the UpdateFreqHz of this request should be set to 0 Hz. .. py:method:: with_target_output(new_target_output: float) -> DifferentialDutyCycle Modifies this Control Request's target_output parameter and returns itself for method-chaining and easier to use request API. Proportion of supply voltage to apply in fractional units between -1 and +1 - Units: fractional :param new_target_output: Parameter to modify :type new_target_output: float :returns: Itself :rtype: DifferentialDutyCycle .. py:method:: with_differential_position(new_differential_position: phoenix6.units.rotation) -> DifferentialDutyCycle Modifies this Control Request's differential_position parameter and returns itself for method-chaining and easier to use request API. Differential position to drive towards in rotations - Units: rotations :param new_differential_position: Parameter to modify :type new_differential_position: rotation :returns: Itself :rtype: DifferentialDutyCycle .. py:method:: with_enable_foc(new_enable_foc: bool) -> DifferentialDutyCycle Modifies this Control Request's enable_foc parameter and returns itself for method-chaining and easier to use request API. Set to true to use FOC commutation (requires Phoenix Pro), which increases peak power by ~15% on supported devices (see SupportsFOC). Set to false to use trapezoidal commutation. FOC improves motor performance by leveraging torque (current) control. However, this may be inconvenient for applications that require specifying duty cycle or voltage. CTR-Electronics has developed a hybrid method that combines the performances gains of FOC while still allowing applications to provide duty cycle or voltage demand. This not to be confused with simple sinusoidal control or phase voltage control which lacks the performance gains. :param new_enable_foc: Parameter to modify :type new_enable_foc: bool :returns: Itself :rtype: DifferentialDutyCycle .. py:method:: with_differential_slot(new_differential_slot: int) -> DifferentialDutyCycle Modifies this Control Request's differential_slot parameter and returns itself for method-chaining and easier to use request API. Select which gains are applied to the differential controller by selecting the slot. Use the configuration api to set the gain values for the selected slot before enabling this feature. Slot must be within [0,2]. :param new_differential_slot: Parameter to modify :type new_differential_slot: int :returns: Itself :rtype: DifferentialDutyCycle .. py:method:: with_override_brake_dur_neutral(new_override_brake_dur_neutral: bool) -> DifferentialDutyCycle Modifies this Control Request's override_brake_dur_neutral parameter and returns itself for method-chaining and easier to use request API. Set to true to static-brake the rotor when output is zero (or within deadband). Set to false to use the NeutralMode configuration setting (default). This flag exists to provide the fundamental behavior of this control when output is zero, which is to provide 0V to the motor. :param new_override_brake_dur_neutral: Parameter to modify :type new_override_brake_dur_neutral: bool :returns: Itself :rtype: DifferentialDutyCycle .. py:method:: with_limit_forward_motion(new_limit_forward_motion: bool) -> DifferentialDutyCycle Modifies this Control Request's limit_forward_motion parameter and returns itself for method-chaining and easier to use request API. Set to true to force forward limiting. This allows users to use other limit switch sensors connected to robot controller. This also allows use of active sensors that require external power. :param new_limit_forward_motion: Parameter to modify :type new_limit_forward_motion: bool :returns: Itself :rtype: DifferentialDutyCycle .. py:method:: with_limit_reverse_motion(new_limit_reverse_motion: bool) -> DifferentialDutyCycle Modifies this Control Request's limit_reverse_motion parameter and returns itself for method-chaining and easier to use request API. Set to true to force reverse limiting. This allows users to use other limit switch sensors connected to robot controller. This also allows use of active sensors that require external power. :param new_limit_reverse_motion: Parameter to modify :type new_limit_reverse_motion: bool :returns: Itself :rtype: DifferentialDutyCycle .. py:method:: with_ignore_hardware_limits(new_ignore_hardware_limits: bool) -> DifferentialDutyCycle Modifies this Control Request's ignore_hardware_limits parameter and returns itself for method-chaining and easier to use request API. Set to true to ignore hardware limit switches and the LimitForwardMotion and LimitReverseMotion parameters, instead allowing motion. This can be useful on mechanisms such as an intake/feeder, where a limit switch stops motion while intaking but should be ignored when feeding to a shooter. The hardware limit faults and Forward/ReverseLimit signals will still report the values of the limit switches regardless of this parameter. :param new_ignore_hardware_limits: Parameter to modify :type new_ignore_hardware_limits: bool :returns: Itself :rtype: DifferentialDutyCycle .. py:method:: with_use_timesync(new_use_timesync: bool) -> DifferentialDutyCycle Modifies this Control Request's use_timesync parameter and returns itself for method-chaining and easier to use request API. Set to true to delay applying this control request until a timesync boundary (requires Phoenix Pro and CANivore). This eliminates the impact of nondeterministic network delays in exchange for a larger but deterministic control latency. This requires setting the ControlTimesyncFreqHz config in MotorOutputConfigs. Additionally, when this is enabled, the UpdateFreqHz of this request should be set to 0 Hz. :param new_use_timesync: Parameter to modify :type new_use_timesync: bool :returns: Itself :rtype: DifferentialDutyCycle .. py:method:: with_update_freq_hz(new_update_freq_hz: phoenix6.units.hertz) -> DifferentialDutyCycle Sets the period at which this control will update at. This is designated in Hertz, with a minimum of 20 Hz (every 50 ms) and a maximum of 1000 Hz (every 1 ms). If this field is set to 0 Hz, the control request will be sent immediately as a one-shot frame. This may be useful for advanced applications that require outputs to be synchronized with data acquisition. In this case, we recommend not exceeding 50 ms between control calls. :param new_update_freq_hz: Parameter to modify :type new_update_freq_hz: hertz :returns: Itself :rtype: DifferentialDutyCycle