Class DutyCycleOut
- All Implemented Interfaces:
Cloneable
This control mode will output a proportion of the supplied voltage which is supplied by the user.
-
Field Summary
Modifier and TypeFieldDescriptionboolean
Set to true to use FOC commutation (requires Phoenix Pro), which increases peak power by ~15%.boolean
Set to true to ignore hardware limit switches and the LimitForwardMotion and LimitReverseMotion parameters, instead allowing motion.boolean
Set to true to force forward limiting.boolean
Set to true to force reverse limiting.double
Proportion of supply voltage to apply in fractional units between -1 and +1boolean
Set to true to static-brake the rotor when output is zero (or within deadband).double
The period at which this control will update at.boolean
Set to true to delay applying this control request until a timesync boundary (requires Phoenix Pro and CANivore).Fields inherited from class com.ctre.phoenix6.controls.ControlRequest
name
-
Constructor Summary
-
Method Summary
Modifier and TypeMethodDescriptionclone()
Gets information about this control request.sendRequest
(String network, int deviceHash) toString()
withEnableFOC
(boolean newEnableFOC) Modifies this Control Request's EnableFOC parameter and returns itself for method-chaining and easier to use request API.withIgnoreHardwareLimits
(boolean newIgnoreHardwareLimits) Modifies this Control Request's IgnoreHardwareLimits parameter and returns itself for method-chaining and easier to use request API.withLimitForwardMotion
(boolean newLimitForwardMotion) Modifies this Control Request's LimitForwardMotion parameter and returns itself for method-chaining and easier to use request API.withLimitReverseMotion
(boolean newLimitReverseMotion) Modifies this Control Request's LimitReverseMotion parameter and returns itself for method-chaining and easier to use request API.withOutput
(double newOutput) Modifies this Control Request's Output parameter and returns itself for method-chaining and easier to use request API.withOverrideBrakeDurNeutral
(boolean newOverrideBrakeDurNeutral) Modifies this Control Request's OverrideBrakeDurNeutral parameter and returns itself for method-chaining and easier to use request API.withUpdateFreqHz
(double newUpdateFreqHz) Sets the period at which this control will update at.withUpdateFreqHz
(edu.wpi.first.units.measure.Frequency newUpdateFreqHz) Sets the period at which this control will update at.withUseTimesync
(boolean newUseTimesync) Modifies this Control Request's UseTimesync parameter and returns itself for method-chaining and easier to use request API.Methods inherited from class com.ctre.phoenix6.controls.ControlRequest
getName
-
Field Details
-
Output
Proportion of supply voltage to apply in fractional units between -1 and +1 -
EnableFOC
Set to true to use FOC commutation (requires Phoenix Pro), which increases peak power by ~15%. Set to false to use trapezoidal commutation.FOC improves motor performance by leveraging torque (current) control. However, this may be inconvenient for applications that require specifying duty cycle or voltage. CTR-Electronics has developed a hybrid method that combines the performances gains of FOC while still allowing applications to provide duty cycle or voltage demand. This not to be confused with simple sinusoidal control or phase voltage control which lacks the performance gains.
-
OverrideBrakeDurNeutral
Set to true to static-brake the rotor when output is zero (or within deadband). Set to false to use the NeutralMode configuration setting (default). This flag exists to provide the fundamental behavior of this control when output is zero, which is to provide 0V to the motor. -
LimitForwardMotion
Set to true to force forward limiting. This allows users to use other limit switch sensors connected to robot controller. This also allows use of active sensors that require external power. -
LimitReverseMotion
Set to true to force reverse limiting. This allows users to use other limit switch sensors connected to robot controller. This also allows use of active sensors that require external power. -
IgnoreHardwareLimits
Set to true to ignore hardware limit switches and the LimitForwardMotion and LimitReverseMotion parameters, instead allowing motion.This can be useful on mechanisms such as an intake/feeder, where a limit switch stops motion while intaking but should be ignored when feeding to a shooter.
The hardware limit faults and Forward/ReverseLimit signals will still report the values of the limit switches regardless of this parameter.
-
UseTimesync
Set to true to delay applying this control request until a timesync boundary (requires Phoenix Pro and CANivore). This eliminates the impact of nondeterministic network delays in exchange for a larger but deterministic control latency.This requires setting the ControlTimesyncFreqHz config in MotorOutputConfigs. Additionally, when this is enabled, the UpdateFreqHz of this request should be set to 0 Hz.
-
UpdateFreqHz
The period at which this control will update at. This is designated in Hertz, with a minimum of 20 Hz (every 50 ms) and a maximum of 1000 Hz (every 1 ms).If this field is set to 0 Hz, the control request will be sent immediately as a one-shot frame. This may be useful for advanced applications that require outputs to be synchronized with data acquisition. In this case, we recommend not exceeding 50 ms between control calls.
-
-
Constructor Details
-
DutyCycleOut
Request a specified motor duty cycle.This control mode will output a proportion of the supplied voltage which is supplied by the user.
- Parameters:
Output
- Proportion of supply voltage to apply in fractional units between -1 and +1
-
-
Method Details
-
toString
-
sendRequest
- Specified by:
sendRequest
in classControlRequest
-
getControlInfo
Gets information about this control request.- Specified by:
getControlInfo
in classControlRequest
- Returns:
- Map of control parameter names and corresponding applied values
-
withOutput
Modifies this Control Request's Output parameter and returns itself for method-chaining and easier to use request API.Proportion of supply voltage to apply in fractional units between -1 and +1
- Parameters:
newOutput
- Parameter to modify- Returns:
- Itself
-
withEnableFOC
Modifies this Control Request's EnableFOC parameter and returns itself for method-chaining and easier to use request API.Set to true to use FOC commutation (requires Phoenix Pro), which increases peak power by ~15%. Set to false to use trapezoidal commutation.
FOC improves motor performance by leveraging torque (current) control. However, this may be inconvenient for applications that require specifying duty cycle or voltage. CTR-Electronics has developed a hybrid method that combines the performances gains of FOC while still allowing applications to provide duty cycle or voltage demand. This not to be confused with simple sinusoidal control or phase voltage control which lacks the performance gains.
- Parameters:
newEnableFOC
- Parameter to modify- Returns:
- Itself
-
withOverrideBrakeDurNeutral
Modifies this Control Request's OverrideBrakeDurNeutral parameter and returns itself for method-chaining and easier to use request API.Set to true to static-brake the rotor when output is zero (or within deadband). Set to false to use the NeutralMode configuration setting (default). This flag exists to provide the fundamental behavior of this control when output is zero, which is to provide 0V to the motor.
- Parameters:
newOverrideBrakeDurNeutral
- Parameter to modify- Returns:
- Itself
-
withLimitForwardMotion
Modifies this Control Request's LimitForwardMotion parameter and returns itself for method-chaining and easier to use request API.Set to true to force forward limiting. This allows users to use other limit switch sensors connected to robot controller. This also allows use of active sensors that require external power.
- Parameters:
newLimitForwardMotion
- Parameter to modify- Returns:
- Itself
-
withLimitReverseMotion
Modifies this Control Request's LimitReverseMotion parameter and returns itself for method-chaining and easier to use request API.Set to true to force reverse limiting. This allows users to use other limit switch sensors connected to robot controller. This also allows use of active sensors that require external power.
- Parameters:
newLimitReverseMotion
- Parameter to modify- Returns:
- Itself
-
withIgnoreHardwareLimits
Modifies this Control Request's IgnoreHardwareLimits parameter and returns itself for method-chaining and easier to use request API.Set to true to ignore hardware limit switches and the LimitForwardMotion and LimitReverseMotion parameters, instead allowing motion.
This can be useful on mechanisms such as an intake/feeder, where a limit switch stops motion while intaking but should be ignored when feeding to a shooter.
The hardware limit faults and Forward/ReverseLimit signals will still report the values of the limit switches regardless of this parameter.
- Parameters:
newIgnoreHardwareLimits
- Parameter to modify- Returns:
- Itself
-
withUseTimesync
Modifies this Control Request's UseTimesync parameter and returns itself for method-chaining and easier to use request API.Set to true to delay applying this control request until a timesync boundary (requires Phoenix Pro and CANivore). This eliminates the impact of nondeterministic network delays in exchange for a larger but deterministic control latency.
This requires setting the ControlTimesyncFreqHz config in MotorOutputConfigs. Additionally, when this is enabled, the UpdateFreqHz of this request should be set to 0 Hz.
- Parameters:
newUseTimesync
- Parameter to modify- Returns:
- Itself
-
withUpdateFreqHz
Sets the period at which this control will update at. This is designated in Hertz, with a minimum of 20 Hz (every 50 ms) and a maximum of 1000 Hz (every 1 ms).If this field is set to 0 Hz, the control request will be sent immediately as a one-shot frame. This may be useful for advanced applications that require outputs to be synchronized with data acquisition. In this case, we recommend not exceeding 50 ms between control calls.
- Specified by:
withUpdateFreqHz
in classControlRequest
- Parameters:
newUpdateFreqHz
- Parameter to modify- Returns:
- Itself
-
withUpdateFreqHz
Sets the period at which this control will update at. This is designated in Hertz, with a minimum of 20 Hz (every 50 ms) and a maximum of 1000 Hz (every 1 ms).If this field is set to 0 Hz, the control request will be sent immediately as a one-shot frame. This may be useful for advanced applications that require outputs to be synchronized with data acquisition. In this case, we recommend not exceeding 50 ms between control calls.
- Parameters:
newUpdateFreqHz
- Parameter to modify- Returns:
- Itself
-
clone
-