Class MotionMagicVelocityTorqueCurrentFOC

java.lang.Object
com.ctre.phoenix6.controls.ControlRequest
com.ctre.phoenix6.controls.MotionMagicVelocityTorqueCurrentFOC
All Implemented Interfaces:
Cloneable

public class MotionMagicVelocityTorqueCurrentFOC
extends ControlRequest
implements Cloneable
Requests Motion Magic® to target a final velocity using a motion profile. This allows smooth transitions between velocity set points. Users can optionally provide a torque feedforward.

Motion Magic® Velocity produces a motion profile in real-time while attempting to honor the specified Acceleration and Jerk value. This control mode does not use the CruiseVelocity, Expo_kV, or Expo_kA configs. If the specified acceleration is zero, the Acceleration under Motion Magic® configuration parameter is used instead. This allows for runtime adjustment of acceleration for advanced users. Jerk is also specified in the Motion Magic® persistent configuration values. If Jerk is set to zero, Motion Magic® will produce a trapezoidal acceleration profile. Target velocity can also be changed on-the-fly and Motion Magic® will do its best to adjust the profile. This control mode is based on torque current, so relevant closed-loop gains will use Amperes for the numerator.

  • Field Details

    • Velocity

      public double Velocity
      Target velocity to drive toward in rotations per second. This can be changed on-the fly.
    • Acceleration

      public double Acceleration
      This is the absolute Acceleration to use generating the profile. If this parameter is zero, the Acceleration persistent configuration parameter is used instead. Acceleration is in rotations per second squared. If nonzero, the signage does not matter as the absolute value is used.
    • EnableFOC

      public boolean EnableFOC
      Set to true to use FOC commutation (requires Phoenix Pro), which increases peak power by ~15%. Set to false to use trapezoidal commutation.

      FOC improves motor performance by leveraging torque (current) control. However, this may be inconvenient for applications that require specifying duty cycle or voltage. CTR-Electronics has developed a hybrid method that combines the performances gains of FOC while still allowing applications to provide duty cycle or voltage demand. This not to be confused with simple sinusoidal control or phase voltage control which lacks the performance gains.

    • FeedForward

      public double FeedForward
      Feedforward to apply in torque current in Amperes. User can use motor's kT to scale Newton-meter to Amperes.
    • Slot

      public int Slot
      Select which gains are applied by selecting the slot. Use the configuration api to set the gain values for the selected slot before enabling this feature. Slot must be within [0,2].
    • OverrideCoastDurNeutral

      public boolean OverrideCoastDurNeutral
      Set to true to coast the rotor when output is zero (or within deadband). Set to false to use the NeutralMode configuration setting (default). This flag exists to provide the fundamental behavior of this control when output is zero, which is to provide 0A (zero torque).
    • LimitForwardMotion

      public boolean LimitForwardMotion
      Set to true to force forward limiting. This allows users to use other limit switch sensors connected to robot controller. This also allows use of active sensors that require external power.
    • LimitReverseMotion

      public boolean LimitReverseMotion
      Set to true to force reverse limiting. This allows users to use other limit switch sensors connected to robot controller. This also allows use of active sensors that require external power.
    • UpdateFreqHz

      public double UpdateFreqHz
      The period at which this control will update at. This is designated in Hertz, with a minimum of 20 Hz (every 50 ms) and a maximum of 1000 Hz (every 1 ms).

      If this field is set to 0 Hz, the control request will be sent immediately as a one-shot frame. This may be useful for advanced applications that require outputs to be synchronized with data acquisition. In this case, we recommend not exceeding 50 ms between control calls.

  • Constructor Details

    • MotionMagicVelocityTorqueCurrentFOC

      public MotionMagicVelocityTorqueCurrentFOC​(double Velocity, double Acceleration, boolean EnableFOC, double FeedForward, int Slot, boolean OverrideCoastDurNeutral, boolean LimitForwardMotion, boolean LimitReverseMotion)
      Requests Motion Magic® to target a final velocity using a motion profile. This allows smooth transitions between velocity set points. Users can optionally provide a torque feedforward.

      Motion Magic® Velocity produces a motion profile in real-time while attempting to honor the specified Acceleration and Jerk value. This control mode does not use the CruiseVelocity, Expo_kV, or Expo_kA configs. If the specified acceleration is zero, the Acceleration under Motion Magic® configuration parameter is used instead. This allows for runtime adjustment of acceleration for advanced users. Jerk is also specified in the Motion Magic® persistent configuration values. If Jerk is set to zero, Motion Magic® will produce a trapezoidal acceleration profile. Target velocity can also be changed on-the-fly and Motion Magic® will do its best to adjust the profile. This control mode is based on torque current, so relevant closed-loop gains will use Amperes for the numerator.

      Parameters:
      Velocity - Target velocity to drive toward in rotations per second. This can be changed on-the fly.
      Acceleration - This is the absolute Acceleration to use generating the profile. If this parameter is zero, the Acceleration persistent configuration parameter is used instead. Acceleration is in rotations per second squared. If nonzero, the signage does not matter as the absolute value is used.
      EnableFOC - Set to true to use FOC commutation (requires Phoenix Pro), which increases peak power by ~15%. Set to false to use trapezoidal commutation.

      FOC improves motor performance by leveraging torque (current) control. However, this may be inconvenient for applications that require specifying duty cycle or voltage. CTR-Electronics has developed a hybrid method that combines the performances gains of FOC while still allowing applications to provide duty cycle or voltage demand. This not to be confused with simple sinusoidal control or phase voltage control which lacks the performance gains.

      FeedForward - Feedforward to apply in torque current in Amperes. User can use motor's kT to scale Newton-meter to Amperes.
      Slot - Select which gains are applied by selecting the slot. Use the configuration api to set the gain values for the selected slot before enabling this feature. Slot must be within [0,2].
      OverrideCoastDurNeutral - Set to true to coast the rotor when output is zero (or within deadband). Set to false to use the NeutralMode configuration setting (default). This flag exists to provide the fundamental behavior of this control when output is zero, which is to provide 0A (zero torque).
      LimitForwardMotion - Set to true to force forward limiting. This allows users to use other limit switch sensors connected to robot controller. This also allows use of active sensors that require external power.
      LimitReverseMotion - Set to true to force reverse limiting. This allows users to use other limit switch sensors connected to robot controller. This also allows use of active sensors that require external power.
    • MotionMagicVelocityTorqueCurrentFOC

      public MotionMagicVelocityTorqueCurrentFOC​(double Velocity)
      Requests Motion Magic® to target a final velocity using a motion profile. This allows smooth transitions between velocity set points. Users can optionally provide a torque feedforward.

      Motion Magic® Velocity produces a motion profile in real-time while attempting to honor the specified Acceleration and Jerk value. This control mode does not use the CruiseVelocity, Expo_kV, or Expo_kA configs. If the specified acceleration is zero, the Acceleration under Motion Magic® configuration parameter is used instead. This allows for runtime adjustment of acceleration for advanced users. Jerk is also specified in the Motion Magic® persistent configuration values. If Jerk is set to zero, Motion Magic® will produce a trapezoidal acceleration profile. Target velocity can also be changed on-the-fly and Motion Magic® will do its best to adjust the profile. This control mode is based on torque current, so relevant closed-loop gains will use Amperes for the numerator.

      Parameters:
      Velocity - Target velocity to drive toward in rotations per second. This can be changed on-the fly.
  • Method Details

    • toString

      public String toString()
      Overrides:
      toString in class Object
    • sendRequest

      public StatusCode sendRequest​(String network, int deviceHash, boolean cancelOtherRequests)
      Specified by:
      sendRequest in class ControlRequest
    • getControlInfo

      Gets information about this control request.
      Specified by:
      getControlInfo in class ControlRequest
      Returns:
      Map of control parameter names and corresponding applied values
    • withVelocity

      public MotionMagicVelocityTorqueCurrentFOC withVelocity​(double newVelocity)
      Modifies this Control Request's Velocity parameter and returns itself for method-chaining and easier to use request API.

      Target velocity to drive toward in rotations per second. This can be changed on-the fly.

      Parameters:
      newVelocity - Parameter to modify
      Returns:
      Itself
    • withAcceleration

      public MotionMagicVelocityTorqueCurrentFOC withAcceleration​(double newAcceleration)
      Modifies this Control Request's Acceleration parameter and returns itself for method-chaining and easier to use request API.

      This is the absolute Acceleration to use generating the profile. If this parameter is zero, the Acceleration persistent configuration parameter is used instead. Acceleration is in rotations per second squared. If nonzero, the signage does not matter as the absolute value is used.

      Parameters:
      newAcceleration - Parameter to modify
      Returns:
      Itself
    • withEnableFOC

      public MotionMagicVelocityTorqueCurrentFOC withEnableFOC​(boolean newEnableFOC)
      Modifies this Control Request's EnableFOC parameter and returns itself for method-chaining and easier to use request API.

      Set to true to use FOC commutation (requires Phoenix Pro), which increases peak power by ~15%. Set to false to use trapezoidal commutation.

      FOC improves motor performance by leveraging torque (current) control. However, this may be inconvenient for applications that require specifying duty cycle or voltage. CTR-Electronics has developed a hybrid method that combines the performances gains of FOC while still allowing applications to provide duty cycle or voltage demand. This not to be confused with simple sinusoidal control or phase voltage control which lacks the performance gains.

      Parameters:
      newEnableFOC - Parameter to modify
      Returns:
      Itself
    • withFeedForward

      public MotionMagicVelocityTorqueCurrentFOC withFeedForward​(double newFeedForward)
      Modifies this Control Request's FeedForward parameter and returns itself for method-chaining and easier to use request API.

      Feedforward to apply in torque current in Amperes. User can use motor's kT to scale Newton-meter to Amperes.

      Parameters:
      newFeedForward - Parameter to modify
      Returns:
      Itself
    • withSlot

      Modifies this Control Request's Slot parameter and returns itself for method-chaining and easier to use request API.

      Select which gains are applied by selecting the slot. Use the configuration api to set the gain values for the selected slot before enabling this feature. Slot must be within [0,2].

      Parameters:
      newSlot - Parameter to modify
      Returns:
      Itself
    • withOverrideCoastDurNeutral

      public MotionMagicVelocityTorqueCurrentFOC withOverrideCoastDurNeutral​(boolean newOverrideCoastDurNeutral)
      Modifies this Control Request's OverrideCoastDurNeutral parameter and returns itself for method-chaining and easier to use request API.

      Set to true to coast the rotor when output is zero (or within deadband). Set to false to use the NeutralMode configuration setting (default). This flag exists to provide the fundamental behavior of this control when output is zero, which is to provide 0A (zero torque).

      Parameters:
      newOverrideCoastDurNeutral - Parameter to modify
      Returns:
      Itself
    • withLimitForwardMotion

      public MotionMagicVelocityTorqueCurrentFOC withLimitForwardMotion​(boolean newLimitForwardMotion)
      Modifies this Control Request's LimitForwardMotion parameter and returns itself for method-chaining and easier to use request API.

      Set to true to force forward limiting. This allows users to use other limit switch sensors connected to robot controller. This also allows use of active sensors that require external power.

      Parameters:
      newLimitForwardMotion - Parameter to modify
      Returns:
      Itself
    • withLimitReverseMotion

      public MotionMagicVelocityTorqueCurrentFOC withLimitReverseMotion​(boolean newLimitReverseMotion)
      Modifies this Control Request's LimitReverseMotion parameter and returns itself for method-chaining and easier to use request API.

      Set to true to force reverse limiting. This allows users to use other limit switch sensors connected to robot controller. This also allows use of active sensors that require external power.

      Parameters:
      newLimitReverseMotion - Parameter to modify
      Returns:
      Itself
    • withUpdateFreqHz

      public MotionMagicVelocityTorqueCurrentFOC withUpdateFreqHz​(double newUpdateFreqHz)
      Sets the period at which this control will update at. This is designated in Hertz, with a minimum of 20 Hz (every 50 ms) and a maximum of 1000 Hz (every 1 ms).

      If this field is set to 0 Hz, the control request will be sent immediately as a one-shot frame. This may be useful for advanced applications that require outputs to be synchronized with data acquisition. In this case, we recommend not exceeding 50 ms between control calls.

      Parameters:
      newUpdateFreqHz - Parameter to modify
      Returns:
      Itself
    • clone

      Overrides:
      clone in class Object